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Abstrad 

traversa/ of a container S as a set) is defined 

fo:r all x E S 
:F(x, S) 

the iteration scheme 

where :F is a function that might possibly S inserting new elements. We assume that 
the order in which the elements are treated is not relevant, as long as the iteration continues 
untíl :F has been applied to all elements currently in S, including those :F has inserted. Standard 
iteration mechanisms, such as the iterators provided in the C++ Standard Template Library 
(STL), do not directly support complete traversals. In this paper we present two approaches to 
complete traversals, both extending the STL framework, one by means of generic algorithms 
and the other by means of a container adaptor. 

Keywords: Generic Programming, Standard Template Library (STL), Iterators, Adaptors, 
Containers, Templates, C++. 

1 Introduction 

Consider the following problem: 

A xnanager wants to arrange a meeting of a certain set of people in her company. For 
each person in the original set she also wants to invite that person's boss, that boss's 
boss, and so on. (She has a database from which she can ten who a person's boss is.) 

The manager can salve this p:roblem fairly simply by writing down the initial set of people¡s names 
in a list and iterating through the list from beginning to end, inserting new persons at the end where 
they become part of the iteration. To avoid duplicating names on the list, she should append a 
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person's name to the list if and only if the name is not already present. In the computerized version 
of this problem, with a large list, an inefficient linear search is required, rather than the binary 
search that would be possible if the set of names could be kept in, say, alphabetic order. In that 
case, however, new names should be inserted in their proper place to maintain the order. But this in 
turn makes it difficult to tell when the iteration should stop, since names might have been inserted 
befare the current iteration point. The kind of iteration required to gracefuHy salve this problem is 
caBed a complete tmversal; we give a formal definition in Section 2. Problems requiring complete 
traversals are fairly common (we give another example in Section 2), and while there are various ad 
hoc ways of solving them, programmers should ideally have at their command an efficient packaged 
solution. In this paper we describe two such approaches to complete traversa!, both of which fit 
into the framework defined by the Standard Template Library, STL (part of the ANSI/ISO draft 
standard for C++ [2]). 

STL [8, 5, 1] provides a set of easily configurable software components of six major kinds: 
generic algoritluns, containers, iterators, function objects, adaptors, and allocators. In each of 
these component categories, STL provides a relatively smaH set of fundamental components; it 
is through uniformity of interfaces and orthogonality of component structure that STL provides 
functionality far beyond the actual number of components induded. But STL is not intended as a 
closed system; its structure is designed with extension in mind. The complete traversal components 
described in this paper may be of interest not only for the functionality they provide, but also as 
examples of, and measures of, how weH the existing STL components support extensions. 

In Section 3, we give two distinct ways of solving the complete traversa} problem: a generic 
algorithms approach and a container adaptar approach. In both approaches, the complete traversa! 
components are designed to work with the category of STL components called associative containers, 
which support fast retrieval of objects based on keys. The generic algorithms are restricted to sorted 
associative containers, in which keys are maintained according toa given ordering function, but the 
container adaptor we provide can also be used with hashed associative containers, which give up 
order properties in favor of faster retrieval. Hashed associative containers are not part of the 
draft C++ standard but are now provided as an STL extension by at least one compiler vendor [1 J. 
Another classification of associative containers is unique, in which objects in a container cannot have 
equivalent keys, versus multiple, in which they can. Still another classification is simple containers, 
in which only the keys are stored, versus pair containers, in which pairs of keys and associated 
values are kept. The sorted associative containers provided in STL are shown in the following table: 

Component Classification 
set<Key, Compare, Allocator> unique, simple 
multiset<Key, Compare, Allocator> multiple, simple 
map<Key, T, Compare, Allocator> unique, pair 
multimap<Key, T, Compare, Allocator> multiple, pair 

All of the associative containers have essentially the same interface; e.g., each provides insert 
and erase member functions for inserting and deleting objects, several kinds of search member 
functions, and several kinds of iterators for traversing through the current contents. None, however, 
provides for complete traversals in the sense discussed here. The specifics of these interfaces, and 
how our components are used for complete traversals, are illustrated at the end of Section 3, in 
terms of solving the manager's problem stated at the beginning of the paper. 

We give more than one approach to the complete traversal problem because no single solution 
seems best in aH cases. The presentation in Section 3 includes complexity analyses and discussion 
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of other factors such as naturalness of interfaces. We are exploring stiU other approaches, which are 
discussed briefty in the concluding section. 

2 Complete Traversals 

We begin thís section by giving a precise definition of complete traversals. We then describe another 
example application of the concept. 

The definition is dependent on whether the given container S is unique 
elements, as in an STL set or map) or multiple (i.e., repeated elements are as in an STL 
multiset o:r multimap). In the unique case, for a given function :F, let J:(x, S) be the set of 
inserted in S by F(x, S). Then the iteration 

lS a complete tmversal 

fo:r aH x E S 
F(x, S) 

S if F is applied to 

So S 

00 

S US; 
i=O 

the in the set S by 

If S is a multiple container, then J:(x, S) is defined as a multiset, the unions in the definition are 
replaced by multiset unions, and l::JxES means each x is repeated the number of times it occms in 
S. 

In case that S is unique, it follmvs from the definition that the traversal is finite 
if and only if there is some k such Sk+l ~ U7=o . In the multiple case, we have the stronger 

that Sk is empty for aH sufficiendy large k. In what we assume 
traversals are finite. Although a finite complete traversa! could computed actuaHy constrncting 
the sets or multisets Si, we seek solutions that are more space time efficient. 

As described in Section 1, the manager's invitation Hst is one problem that might 
instantiating a complete traversal scheme. We show in detail such a solution using our complete 
traversal components in Section 3.4. As another example, the one which this stucly of 
complete traversals, suppose we are given a specification of types written in a certain formalism 

CTS. 1 CTS types are dassified into atomic types (which have no structure), concrete types 
(which are used to define data structures), and abstract (which are used to define classes). The 
representations associated with dasses are, in turn, concrete CTS types. With each CTS expression 
we can associate a syntax which captures the rel.ationships among involved types. V/e also 
a.ssume that CTS expression defining a type is associated with a name. Given a map S of 
elements (n, g), where n is the name of an abstract CTS type and gis the syntax graph associated 
with its representation, we want to iterate over S in a way that, at each iteration, we take an 

g) traverse g in a certain order, making sur e that we insert into S elements ( r/, 
for aH type names n 1 we come across, where g1 is the syntax graph assocíated wíth n'. Iteration 

aH elements in S ha ve been processed. This instan ce the 
is summarized in Fig. 1, where S is shown with its initial val u e. 

1 CTS stands for common Type system. The application problem and the clefinition of CTS were taken from [71. 



S = { ( n, g) 1 n is the na me an abstract CTS type 
and g -i/; the syntax graph of its representation} 

:F(x, S) = traverse x.g and insert in S any type name found 
with its corresponding syntax graph 

Figure 1: An instance of the complete traversal problem 

3 Complete Trave:rsals Implemented as STL Extensions 

In this section we present two different approaches to complete traversals, one using generic algo
rithms and the other a container adaptor. We also compare the complexity of these components, 
and show how they can be used in a simple application. 

3.1 Generic Algorithms 

A generic algorithm is an algorithm designed to work with a variety of data structures, the special
ization to a particular structure being realized by the programming language processor ( compiler, 
interpreter, or run-time system) rather than by manual editing of the source text. In the STL 
framework, generic algo.rithms are expressed as C++ function templates. An algorithm can be 
made generic over a category of containers if the way it accesses a container can be limited to a 
fixed set of operations, aH of which are provided, with the same interfaces, by every container in 
the category. As a simple example, consider the foHowing function template for performing an 
(ordinary) iteration over the elements of a container, applying a function f to each element. 

template <class Container, class Function> 
void for~each(Container& container, Function f) 
{ 

} 

Container::iterator i; 
for (i = container.begin(); i != container.end(); ++i) 

f ( •i); 

This function can be applied to any of the STL containers, because they aH provide iterator types 
(Container: : i terator) and member functions begin and end that return iterators defining the 
range of positions of elements currently within the container. To use for _each with a list ofintegers, 
for example, one could write 

list<int> list1; 
11 ... code to insert some elements in list1 
for_each(list1, f); 

where f is sorne function object that does not modify the list. 
The main algorithmic idea behind our first approach is to set up an iteration through the 

container with the ordinary iterators provided, applying a function f that may genera te new elements 
for insertion into the container. But instead of allowing f to do the insertions, we require it to enter 
the new elements in a queue. After each caH off, we take elements from the queue and insert them 
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into the container, checking whether they are inserted before or after the current iteratíon position. 
If an element is inserted after the current position, it wiH be taken care the 
rernaining iterations, but if it is inserted before the current position, we f to it uucu>"u"'""""' 

in turn may generate new elernents and add thern to the queue). 
STL defines severa! different categories of iterators according to the set 

the most being access iterators. V/hile random access 
''"·c,.o.,vLLCH operators, the by associative containers do not. 
we can stiH easily tell \vhether an element x appears befare another element y in the 
sequence a sorted associative x váth y using the order relation -< 
the container uses to maintain sorted arder. 

There are then two distinct 
container does not 

container, 
insertion 

which traverses a 

ned as lS 

an element 

on whether the cm1tainer is 

It is that f creates maintains a queue elements to be 
them itself), and that it makes this queue available as a member "'"'''H'·"' 

an element taken from this queue into the we use an insertion 
p consisting an iterator that tells where the element was found or 

value is true if and if the element was actuaHy inserted (wa.s not 

pair<UniqueSortedAssociativeGontainer::iterator, bool> 
p ~ container.insert 

inserting 
that returns a 
and a boolean 

The boolean value then is given 
is as follows. 

p. seconcL The fuH definition of complete_unique_traversa.l 

template <class UniqueSortedAssociativeContainer, class Function> 
void complete_unique_traversal(UniqueSortedAssociativeContainer& container, 

Function f) 
{ UniqueSortedAssociativeContainer::value~type v; 

UniqueSortedAssociativeGontainer::iterator i; 

} 

for (i = container.begin(); i != container.end(); ++i) { 
f(*i, container); 

} 

while (!f.Q.empty()) { 

} 

v = f.Q.front(); 
f. Q .popO; 
pair<UniqueSortedAssociativeContainer: :iterator, bool> 

p ~ container.insert 
if (p.second && container.value_comp() , *i)) 

/1 v has been inserted in container (it wasn't already there) 
/1 and it occurs before the current traversal 

position, i, so process it now vith f: 
f , container); 
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For the multiple container case, the generic algorithm complete_mul tiple_traversal is defined 
similarly,2 but the implementation is complicated 
queue is equivalent to the one at the current position, 

that position is no longer simply a matte:r of 
draft C++ standard specification of the insert operatkm on 
where within a range of equivalent elements a new 
conduct a linear search within the :range. Using the original Hewlett-Packard implementation of 
STL, we could omit the linear search since an element is always inserted at the end the range 
of elements equivalent to ít, but we cannot assume this to be the case implementations 
since the standard does not require it. This situation is a simple illustl·ation of tension 
by the library (or language) spedfier, between the goal of aHowing implementors as much freedom 
as possible by leaving sorne details unspecified, and the goal of enabling programmers to optimize 
their code while retaining portability. 

3.2 A Container Adaptor 

The implementation based on generic algorithms, shown in Section 3.1, requires function f (imple
mented by the programmer) to put the elements generated in each activation in a queue, which is 
less natural than having it insert the elements directly into the container. In order to relax this 
requirement, we propase another approach based on a container adaptar, whose usage for imple
menting complete traversals is depicted in Fig. 2. From a given container, the programmer bnilds a 

•.ro id 

Container e; 

complete_container<Container> complete_c(c); 

complete_container<Container>::iterator i; 

for (i ~ complete_c.begin(); i :~ complete_c.end(); i++) 

f(*i, complete_c); 

Containex e 

Figure 2: Implementing complete traversals by using a container adaptar approach 

complete_container whose representation consists of a reference to the input container, plus a data 
structure needed to implement complete traversals. The complete_container adaptor2 provicles: 

e Types size_type and value_type taken from the corresponding Container. 

® A constructor that takes a Container as a parameter and stores a reference to its argument, 
and also creates an iteration list (see below). 

21'he implementation is available from ftp: //kanaima, ciens. ucv. ve/pub/ autoolab/ s-tl. 
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® Types i terator const_i terator, which implement complete traversal iterators on non-
constant or constant containers, respectively. 

"' Member function size, which returns the size 
complete_container. 

the Container 

® Member function insert which takes a valmU::ype value and 
Container. 

The representation of a complet!iLcontainer consists of a container reference and an 
implemented asan STL list<value_type>. The implementation maíntains the following invariant: 

the ea eh itemtion with an i terator, the element with the 
iteratm~ on the iteration list is the one to be the elements to its are 

were already those that will be and elements to its left are those which 

This invariant implies that, be a copy of the Container, 
insert member should insert the element into the 

container and onto the end the iteration list. 

To compare the time 
n be the nmnber 

of our two 1et e be a sorted associatíve container, let 
and let m be total number of done 

f. There might be than N= n +m elements 
inserted might have been 

the 
e 

But N is a bound on the final size of e, so O(log N) bounds the time for any one ínsertion, and 
log N) bounds time for al! insertions. Let T(f, j, be a bound on the total amount 

for j evaluations off on a container of maximum size k, where we exclude (because we have 
counted it) any ti!ne f spends doing insertions. So the total time for evaluating f is T(f, N, N). 

l. In complete_unique_traversal, the time for all of the queue processing is O(m), so the total 
time is 

queue processing time 
O(m) 

+ insertion time 
+ O(mlogN) 

+ function evaluation time 
+ T(j,N,N) 

The extra linear searches required by complete...mul tiple_traversal add to these times an 
extra O(mN) term in the worst case, but in practice the extra time is likely to be negligihle. 

2. For the complete_container adaptor, the time for all of the list processing is O(N), so the 
total time is 

list processing time + insertion time + function evaluation time 
O(N) + O(mlogN) + T(f,N,N) 

Since T(J, N, N) is D(N), the bound in 1 cannot be asymptotically better than the bound in 2. 
It is dear, however, that the list processing time associated with complete containers is more than 
the queue processing associated with the complete traversa! algorithms. It is also clear that the 
complete traversa! algorithms require less extra space than the complete containers. On the other 

containers offer a more natural interface and can be used with hashed 
containers, while the same cannot be said of our complete traversa! algorithms. In summary, these 
two approaches offer a good spectrum of possibilities to tackle the complete traversa} of containers. 
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3A An Example 

As a simple example of use of the generic components described in this section, we program the 
solution of the manager's invitation list problem described in Sectíon 1. First we present a solution 
using one of the generic algorithms of Section 3. L 

11 Read a bosses database file, another file containing an initial 
// set of persons, and compute a complete traversal of the set, inserting 
/1 as a new member the boss of anyone already present. 
#include <iostream.h> 
11 ... other #includes, for STL and string class headers 
#include "complete_traversal.h" // contains complete_unique_traversal algorithm 

/1 A type of map from strings to strings, alphabetically ordered: 
typedef map<string, string, less<string> > name_association; 

/! A type of set of strings, ordered by alphabetic ordering of the keys: 
typedef set<string, less<string> > name_set; 

/1 A class of function objects for generating names using a name association 
directory, meeting requirements of the complete_unique_traversal algorithm: 

class name_function { 
private: 

const name_association& directory; 
public: 

}; 

name_function(const name_association& d) : directory(d) { } 
queue<list<string> > Q; 
void operator()(const string& name, name_set& s) { 

cout << name << endl; 

} 

name_association: :const_iterator i = directory.find(name); 
if (i != directory.end()) 

Q.push((*i).second); 

// Function to sean the database file and build an internal directory 
void get_database(istream& is, name_association& directory); // details omitted 

11 Function to sean the names file and build a names set 
void get_names(istream& is, name_set& names); // details omitted 

int mainO 
{ // Create the bosses database: 

name_association bosses; ifstream ifs("bosses.txt"); 
get_database(ifs, bosses); 

Create the initial set of names: 
name_set invitees; ifstream ifsi("initial.txt"); 
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get_names(ifsi, invitees); 

cout << "Original set of invitees:" << endl; 
for (name_set: :iterator i ~ invitees.begin(); i != invitees.end(); ++i) 

cout << *i << endl; 

cout << "Output during complete traversal:" << endl; 
name_function get_boss(bosses); 
complete_unique_traversal(invitees, get_bos 

cout << "Final set of invitees:" endl; 
for (name_set: :iterator i"' invitees.begin(); i != invitees.end(); ++i) 

cout *i << endl; 

A solution using the complete_container adaptar of Section 3.2 needs a different definition of the 
to be applied to each person, one that does the insertions. this 

ins•ert_boss, the adaptar could be used as 

typedef complete_container<name_set> cc_type; 
cc_type cc(invitees); 
for (cc_type: :iterator k= cc.begin(); k !~ cc.end(); ++k) 

insert_boss(*k, ce); 

4 Related Work 

[3] is one the earliest contributions which offers language support for defining iterators as 
operations on programmer-defined container types. Since the programmer has total control over 
how iteration is defined, supporting complete traversa! would be possible, perhaps by adapting 
one of the approaches discussed here. In [3], the authors mention the potential usefulness of such 
iterators but develop neither a formal definition nor any examples. 

More recently, the work reported in [4] on list iterators in C++ covers issues associated with 
iterator integrity; i.e., problems which may arise when the object to which an iterator is pointing 
is deleted. Even though this work does not deal with complete traversals, the iterator integrity 
problem would come into play if we tried to do complete traversals on STL sequence containers 
(e.g., vectors or deques), because insertion in vectors and deques might require memory reallocation 
which invalidates all iterators pointing to the container in question. Except for the case of such 
iterator invalidation, complete traversals of STL sequence containers can be trivially programmed. 

Another recent related work is the Java Generic Library (JGL) [6], which is strongly based on 
the STL design. For instance, JGL supports the concept of containers and iterators. However, it 
does not appear that complete traversals are directly supported. 

5 Surnma:ry and Future Work 

We have defined the complete traversal of a given container S as an iteration scheme which consists 
of iteratíng over S applying, at each iteration, a function :F(x, S) which might possibly modify S 
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by inserting new elements into it. The iteration stop when aH e1ements currently in S have 
been processed. 

In order to ofler packaged solutions to programmers who need to use this class of iteration 
schemes, we have presented two app.roaches to perform complete traversals implemented on the 
platform provided by STL. Our first approach is in terms generic a]gorithms that that 
the iterated function create a queue to hold the generated elements. One aigorithm handles con
tainers with unique keys, while the other handles containers with rrmltiple keys. By taking 
precautions in the case of multiple keys, we remain independent of the detaiis of particular imple
mentations of sorted associative containers. 

Our second approach is based on a complete container adaptor. The main features of this 
adaptor are the special iterators and insert operation it provides, by which the programmer can 
obtain complete traversals nsing a function that directly i.nserts new elements in the container. 

The time complexities of both our approaches are asymptotically equivalent. However, the ap
proach based on generic algorithms stores just the elements which are generated at each iteration in 
the function's queue, while the container adaptar stores all container elements in its list. 
the other our complete container can be used with any STL associative container (including 
existing extensions such as hashed containers and any future extensions meeting the requirements 
associatíve containers), while the generic algorithms can be used with sorted associative contaíncrs 
only. 

There are still other approaches we are exploring, such as the result of melcllng the complete 
container idea with the approach of keeping just the generated elements. are also interestcd 
in trying iteration schemes which do deletions as weli as insertions. In this direction we have 
conjectured the nonexistence of functions :F which do insertions and deletions ancl are such that the 
orcler of traversa! is irrelevant. The connection between complete traversaJs and iterator integrity is 
also on our list of future work. We are also exploring the relationship hetween complete traversals 
and what we cal! itemtor tmjector·y functions; Le., functions object which describe a specific way 
of traversing a set. Lastly, we planto use the components presented in this paper to solve real-Ji fe 
applications, líke the CTS application mentioned in Section 2, and to measure the performance 
both approaches with randomly-generated containers. 
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